柯西-施瓦茨积分不等式的证明及应用

Author: [扬骁]

Link: [https://zhuanlan.zhihu.com/p/620322246]

  • 定理 设 $f(x),g(x)$ 在区间[a,b]上连续,则

$(\int_{a}^{b}f(x)g(x)dx)²≤\int_{a}^{b}f²(x)dx\int_{a}^{b}g²(x)dx$

等号成立的必要条件是存在常数k使得 $f(x)=kg(x)$

证明

1.定积分的定义

对区间[a,b]等分,等分点为 $x_i=a+\frac{b-a}{n}i,(i=1,2,3,\cdot\cdot\cdot,n)$ 由定积分定义可知

$\int_{a}^{b}f(x)g(x)dx=\lim_{n \rightarrow \infty}{\sum_{i=1}^{n}{f(x_i)g(x_i)\cdot \frac{b-a}{n}}}\ \int_{a}^{b}f^2(x)dx=\lim_{n \rightarrow \infty}{\sum_{i=1}^{n}{f^2(x_i)\cdot \frac{b-a}{n}}}\ \int_{a}^{b}g^2(x)dx=\lim_{n \rightarrow \infty}{\sum_{i=1}^{n}{g^2(x_i)\cdot \frac{b-a}{n}}}\$

由柯西不等式 ${\sum_{i=1}^{n}{f(x_i)g(x_i)}}\leq\left( \sum_{i=1}^{n}{f^2(x_i)} \right)\cdot\left( {\sum_{i=1}^{n}{g^2(x_i)}} \right)$

,以及极限的保号线,定理成立

2.利用判别式Δ

对任意t∈R,都有 $[f(x)+tg(x)]²≥0$ ,则 $\int_{a}^{b}[f(x)+tg(x)]²dx≥0$

挤对任意t∈R有:

$\int_{a}^{b}[f(x)+tg(x)]²dx=t²\int_{a}^{b}g²(x)dx+2t\int_{a}^{b}f(x)g(x)dx+\int_{a}^{b}f²(x)dx≥0$

因此上述关于t的一元二次方程判别式Δ≤0,故

$Δ=[2\int_{a}^{b}f(x)g(x)dx]²-4\int_{a}^{b}g²(x)dx\int_{a}^{b}f²(x)dx≤0$

即$(\int_{a}^{b}f(x)g(x)dx)²≤\int_{a}^{b}f²(x)dx\int_{a}^{b}g²(x)dx$

3.构造函数

令 $F(x)=\int_{a}^{x}f²(t)dt\int_{a}^{x}g²(t)dt-[\int_{a}^{x}f(t)g(t)dt]²,F (a)=0$

$F '(x)=f²(x)\int_{a}^{x}g²(t)dt+g²(x)\int_{a}^{x}f²(t)dt-2f(x)g(x)\int_{a}^{x}f(t)g(t)dt\=\int_{a}^{x}[f²(x)g²(t)dt-2f(x)g(x)f(t)g(t)+g²(x)f²(t)]dt\=\int_{a}^{x}[f(x)g(t)-g(x)f(t)]²dt≥0$

故F(x)在x≥a上单调递增,F(x)≥F(a)=0,F(b) $\geq$ F(a)=0即证

4.二重积分

$\int_{a}^{b}f²(x)dx\int_{a}^{b}g²(x)dx-[\int_{a}^{b}f(x)g(x)dx]²\=\int_{a}^{b}f²(x)dx\int_{a}^{b}g²(y)dy-\int_{a}^{b}f(x)g(x)dx\int_{a}^{b}f(y)g(y)dy\=\int_{a}^{b}\int_{a}^{b}[f²(x)g²(y)-f(x)g(x)f(y)g(y)]dxdy\=\frac{1}{2}\int_{a}^{b}\int_{a}^{b}[f²(x)g²(y)-2f(x)g(x)f(y)g(y)+f²(y)g²(x)]dxdy\=\frac{1}{2}\int_{a}^{b}\int_{a}^{b}[f(x)g(y)-f(y)g(x)]²dxdy≥0$

应用

1.在二元函数上的推广

设二元函数f(x,y),g(x,y)在区域D内可积,有

$(∫∫_Df(x,y)g(x,y)dσ)²≤(∫∫_Df²(x,y)dσ)(∫∫_Dg²(x,y)dσ)$

  • 证明

同样利用一元二次方程的判别式证明

$∫∫_D(f(x,y)+tg(x,y))^2dσ\geq0,t\in R\ ∫∫_Df^2(x,y)dσ+2t∫∫_Df(x,y)g(x,y)dσ=t^2∫∫_Dg^2(x,y)dσ\geq0$

$\Delta\leq0$ 得证

2.holder不等式

设f(x),g(x)在[a,b]上可积,且f(x)>0,g(x)>0,则有

$\int_{a}^{b}f(x)g(x)dx≤(\int_{a}^{b}f^p(x)dx)^{\frac{1}{p}}(\int_{a}^{b}g^q(x)dx)^{\frac{1}{q}}$

其中 $p,q>0,{\frac{1}{p}}+{\frac{1}{q}}=1$

3.习题

1.设f(x)在[0,1]上连续,且1≤f(x)≤3,证明: $1≤\int_{0}^{1}f(x)dx\int_{0}^{1}\frac{1}{f(x)}dx≤\frac{4}{3}$

2.证明: $\int_{o}^{\frac{\pi}{2}}\sqrt{cosx}dx\leq \sqrt{\frac{\pi}{2}}$

3.已知f(x) $\geq$ 0, 在区间[a,b]上连续, $\int_{a}^{b}f(x)dx=1$ , $k$ 为任意实数,试证明:

$(\int_{a}^{b}f(x)coskxdx)^2+(\int_{a}^{b}f(x)sinkxdx)^2\leq1\$

4.f(x) >0, 在区间[0,1]上连续,证明: $\frac{\int_{0}^{1}f^3(x)dx}{\int_{0}^{1}f^2(x)dx}\geq \frac{\int_{0}^{1}f^2(x)dx}{\int_{0}^{1}f(x)dx}$

5.f(x) 在区间[0,1]上二阶连续可导,且 $f(0)=f(1)=f’(1)=1$ ,求证: $\int_{0}^{1}(f’'(x))^2dx\geq4$

6.设函数f(x)在区间[a,b]上有连续的导函数,且f(a)=0,证明:

${\int_{a}^{b} f^2(x)dx\leq\frac{(b-a)^2}{2}\int_{a}^{b}f’^2(x)dx.}\$

4.练习证明答案

1.根据柯西一施瓦茨不等式,有

$\int_{0}^{1}f(x)dx\int_{0}^{1}\frac{1}{f(x)}dx\geq(\int_{0}^{1}\sqrt{f(x)\frac{1}{f(x)}}dx)^2=1\$ 由基本不等式可知

$\int_{0}^{1}f(x)dx\int_{0}^{1}\frac{3}{f(x)}dx\leq\frac{1}{4}(\int_{0}^{1}f(x)dx+\int_{0}^{1}\frac{3}{f(x)}dx)^2$

1≤f(x)≤3可得 $(f(x)-1)(f(x)-3)\leq0$ ,则

$\frac{3}{f(x)}+f(x)\leq4\Rightarrow\int_{0}^{1}(\frac{3}{f(x)}+f(x))dx\leq4$ 得证

2.根据柯西一施瓦茨不等式,有

$(\int_{o}^{\frac{\pi}{2}}\sqrt{cosx}dx)^2\leq\int_{o}^{\frac{\pi}{2}}(\sqrt{cosx})^2dx\cdot\int_{o}^{\frac{\pi}{2}}1^2dx=\frac{\pi}{2}\$

3.利用柯西一施瓦茨不等式,有

$(\int_{a}^{b}f(x)coskxdx)^2\leq\int_{a}^{b}f(x)dx\int_{a}^{b}f(x)cos^2kxdx=\int_{a}^{b}f(x)cos^2kxdx\$ 同理可得 $(\int_{a}^{b}f(x)sinkxdx)^2\leq\int_{a}^{b}f(x)dx\int_{a}^{b}f(x)sin^2kxdx=\int_{a}^{b}f(x)sin^2kxdx\$ 两式相加得证

4.由柯西一施瓦茨不等式,有

$\int_{0}^{1}f^3(x)dx\int_{0}^{1}f(x)dx=\int_{0}^{1}(f^{\frac{3}{2}}(x))^2dx\int_{0}^{1}(f^{\frac{1}{2}}(x))^2dx\\geq\int_{0}^{1}(f^{\frac{3}{2}}(x)dxf^{\frac{1}{2}}(x)dx)^2=(\int_{0}^{1}f^2(x)dx)^2$

得证

5.给定一个函数g(x),由柯西一施瓦茨不等式:

$\int_{0}^{1}(f’‘(x))^2dx\int_{0}^{1}(g(x))^2dx\geq(\int_{0}^{1}(f’‘(x)g(x))dx)^2=(\int_{0}^{1}g(x)df’(x))^2\ =([g(x)f’(x)]0^1-\int{0}^{1}f’(x)d(g(x))=(g(1)-\int_{0}^{1}f’(x)g’(x)dx)^2\ =(g(1)-\int_{0}^{1}g’(x)d(f(x)))^2=(g(1)-[g’(x)f(x)]0^1+\int{0}^{1}f(x)d(g’(x)))^2\ =(g(1)+\int_{0}^{1}f(x)g’'(x)dx)^2$

然后令g(x)=x+k, 代入上式有 $\int_{0}^{1}(f”(x))dxz\geq\frac{(1+k)^2}{ \int_{0}^{1}(x+k)^2dx}=\frac{3(k+1)^2}{3k^2+3k+1}$ ,

此时当 $\frac{3(k+1)^2}{3k^2+3k+1}=4$ 则k=-1/3,即当g(x)=x-1/3等式成立.

6.证明:由牛顿一莱布尼茨公式,有

$f(x)-f(a)=\int_{a}^{x} f’(t)dt.\$

根据柯西一施瓦茨不等式,注意到f(a)=0,有

$f^2(x)=(\int_{a}^{x} f’(t)dt)^2<\leq\int_{a}^{x} f’^2(t)dt\cdot\int_{a}^{x} 1^2dt\=(x-a)\int_{a}^{x} f’^2(t)dt\leq(x-a)\int_{a}^{b} f’^2(t)dt.\$

再由定积分性质(保序性)知,

$\int_{a}^{b} f^2(x)dx\leq\int_{a}^{b}(x-a)dx\cdot\int_{a}^{b} f’^2(t)dt.\$

而 $\int_{a}^{b}(x-a)dx\cdot\int_{a}^{b} f’^2(t)dt=\frac{(b-a)^2}{2}\int_{a}^{b}f’^2(x)dx.$